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Simple Summary: Cancer develops through a complex process involving genetic changes that can
lead to uncontrolled cell growth and tumor formation. This research focuses on developing an
advanced approach to classify tumors into meaningful subgroups based on somatic mutations. Using
machine learning techniques, specifically a deep neural network, and integrating genetic data with
known gene interaction networks, we propose a framework for tumor stratification, called D3NS
(deep neural network integrated into network-based stratification). This framework identifies patient
subtypes predictive for survival and significantly associated with several clinical outcomes (tumor
stage, grade and treatment response). We applied D3NS to real-world data from the Cancer Genome
Atlas for bladder, ovarian, and kidney cancers. The results demonstrate the potential of this approach
to improve cancer stratification, positioning it as a useful base model for cancer research and a
promising tool in clinical settings.

Abstract: (1) Background: The identification of tumor subtypes is fundamental in precision medicine
for accurate diagnoses and personalized therapies. Cancer development is often driven by the
accumulation of somatic mutations that can cause alterations in tissue functions and morphologies.
In this work, a method based on a deep neural network integrated into a network-based stratification
framework (D3NS) is proposed to stratify tumors according to somatic mutations. (2) Methods: This
approach leverages the power of deep neural networks to detect hidden information in the data by
combining the knowledge contained in a network of gene interactions, as typical of network-based
stratification methods. D3NS was applied using real-world data from The Cancer Genome Atlas
for bladder, ovarian, and kidney cancers. (3) Results: This technique allows for the identification of
tumor subtypes characterized by different survival rates and significant associations with several
clinical outcomes (tumor stage, grade or response to therapy). (4) Conclusion: D3NS can provide
a base model in cancer research and could be considered as a useful tool for tumor stratification,
offering potential support in clinical settings.
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1. Introduction

Cancer is a complex disease that arises from a multistep process involving genetic and
epigenetic changes, the downregulation of gene expressions, and chromosomal instability.
The accumulation of somatic mutations increases with age and can cause alterations in
cell growth and functions and in tissue morphologies, promoting cancer development and
progression [1-3].

Tumors are heterogeneous diseases with variable clinical outcomes. At the molecular
level, patients with similar histological and clinical characteristics often show very different
genomic aberrations [4,5].

One of the main challenges in cancer informatics is the stratification of tumors into
clinically and biologically significant subgroups based on the similarity of molecular
profiles. This analysis involves high computational and statistical complexities, requiring
increasingly sophisticated algorithms to handle a high number of variables.

Somatic mutation data have unique characteristics, such as high dimensionality and
sparsity (prevalence of zero values), distinguishing them from other types of genomic data,
such as gene expressions, where for almost every gene, a continuous value is assigned.

In this context, various algorithms based on modern machine learning (ML) techniques
have been developed.

Some of these algorithms can be grouped under the category of network-based strat-
ification [6], which integrates somatic mutation profiles with the knowledge of a gene
interaction network to classify patients into subtypes. Briefly, the information from each
mutation is diffused in the surrounding space defined by the network, propagating the
signal to other functionally related genes. This propagation process helps to reduce the
sparsity of the data, making them more suitable for stratification. Tumor subtypes are then
identified by applying unsupervised ML algorithms, such as NMF (non-negative matrix
factorization) and its variants, K-means and DBSCAN (density-based spatial clustering of
applications with noise) [6-10].

Other approaches directly use sparse data with unsupervised algorithms derived from
artificial neural networks (ANNS), such as autoencoders [11,12].

In these applications, the purpose of the autoencoder is to learn compressed represen-
tations of the input data, with which subgroups of patients can then be identified using
unsupervised techniques.

With these considerations, in this paper, we propose D3NS, an algorithm for the
stratification of tumors based on somatic mutations, which combines the advantages of
different techniques: the knowledge contained in a molecular network, the use of an
autoencoder to reduce dimensionality and the technique of consensus clustering with
K-means to perform a robust stratification of patients into subgroups.

D3NS was applied to three somatic mutation datasets cataloged in The Cancer Genome
Atlas (TCGA) for bladder, ovarian and kidney cancers. The algorithm was evaluated for
its ability to identify subtypes of cancer significantly associated with survival and major
clinical outcomes, such as tumor stage, grade or response to therapy.

2. Materials and Methods
2.1. Overview of D3NS

D3NS receives as input the set of somatic mutations of a cohort of patients and a
network that describes the interactions between genes.

For each patient, somatic mutation data are represented as a binary vector, where each
gene is assigned a value of “1” to indicate the presence of a mutation (regardless of the
number of mutations) or “0” to indicate its absence.

The set of all the patients (organized in rows) and the set of all the possible mutated
genes (arranged in columns) define a binary mutation matrix (MM), Figure 1a, with di-
mensions patients X genes (genes >> patients), from which, with the integration of a gene
network, the algorithm generates a new representation of the mutations useful for achieving
better stratification.
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Figure 1. Overview of D3NS. (a) Representation of a binary mutation matrix, where for each

gene—patient pair, a black point represents a mutated gene corresponding to 1 value. (b) Gene

interaction network onto which the mutations are projected. (c) Representation of network-smoothed

matrix with continuous values after the network propagation process. (d) Autoencoder’s structure,

which receives as input the smoothed mutation profiles of patients and generates their compressed
representation, an encoded matrix, with 100 new essential features. (e) Subtypes obtained with
K-means consensus clustering after 1000 repetitions and the next evaluation based on clinical data.

This process is divided into the following three phases:

Network smoothing: consists of projecting (mapping), for each patient, the binary
mutation profile contained in the MM onto a gene interaction network, Figure 1b.
Subsequently, the network propagation process [13] is applied to spread the influence
of each mutation to the surrounding space related to it. The resulting matrix, the
network-smoothed matrix (NSM), will have continuous values and a much lower
sparsity compared to that of the initial MM, Figure 1c;

Dimensionality reduction: the NSM is provided as input to the autoencoder, which
generates its compressed representation, Figure 1d. The result is a matrix with
continuous values, an encoded matrix (EM), with dimensions patients x features
(features < genes). The number of features is a parameter of the autoencoder, which
defines the number of essential features extracted from the mutations, i.e., the dimen-
sion of the latent space where mutations are mapped;

Stratification: the consensus clustering technique [14] with the K-means algorithm is
applied to the EM, Figure 1e, to stratify patients into subtypes with a variable number
of clusters (k = 2 + 6), evaluating their associations with clinical outcomes.

2.2. Somatic Mutations and Clinical Data

Somatic mutation information and the related clinical data were retrieved from

the public repository cBioPortal for cancer genomics [15] using the pyBioPortal library,
specifically created in Python 3 to simplify and automate acquisition, integration, and
processing operations.
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Three patient cohorts were considered from studies conducted based on specific histo-
logical cancer subtypes: muscle-invasive bladder cancer (BLCA) [16], high-grade serous
ovarian adenocarcinoma (OVCA) [4], and kidney renal clear cell carcinoma (KIRC) [17].
These studies are cataloged within the TCGA, a well-known research project started in
2006 by the National Cancer Institute and the National Human Genome Research Institute,
which has created a database containing a wide variety of cancer data from more than
20,000 samples across 33 types of cancer.

For each dataset, patients with recorded somatic mutations were included. A sum-
mary of the distribution of variants is shown in Supplementary Figure S1, and nonsense
mutations were excluded.

Table 1 shows the compositions of the three patient cohorts, with the number of genes
and the sparsity characterizing the MMs.

Table 1. Summary of the three cohorts of patients.

Cohort N Patients N Genes MM Sparsity
Bladder cancer (BLCA) 412 16,385 98.8%
Ovarian cancer (OVCA) 316 7961 99.5%
Kidney cancer (KIRC) 424 10,257 99.5%

Regarding the clinical data, survival times were downloaded in addition to available
variables for each study, such as sex, age at diagnosis, tumor stage and grade.

2.3. Gene Interaction Networks

The mutations contained in the MM were projected onto a network of gene interactions,
the information of which is stored in a database. To assess the effect of the network on the
algorithm, three public databases were used: STRING v12.0 [18], HumanNet v3 [19], and
Mentha [20].

All the databases considered provide a “confidence score” to define the degree of
interaction between the pairs of genes; in this work, only the 10% most confident interac-
tions were retained [6]. After filtering, all the networks were used in an unweighted and
undirected mode.

Table 2 summarizes the characteristics of the networks considered in this analysis
(filtered values are shown in parentheses).

Table 2. Summary of gene interaction networks.

Network N Nodes ! N Edges 2 Link
19,622 6,857,702 https://string-db.org
STRING v12.0[18] (12,030) 3 (91,983) 3 accessed on 18 March 2024
18,449 977,483 https:/ /www.inetbio.org/
HumanNet v3 [19] (15.435) (97,737) humannet/
! ! accessed on 18 March 2024
https:/ /mentha.uniroma2
18,861 339,047 .
Mentha [20] (8176) (26,584) .it/download.php

accessed on 18 March 2024

I'N genes; 2 N interactions; 3 filtering was performed on the set of interactions categorized at least as “medium
confidence”, meaning, having a score of > 0.4.

2.4. Network Propagation

After mapping the mutation profile of each patient onto the interaction network, the
propagation process, which spreads the mutation signal through the network, is applied.
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The propagation process taken as a reference is the one presented in the HotNet2
algorithm [1], called Random Walk with Restart, described by the following Equation (1):

Ft+l =aFRW + (1 - DC)F() (1)

where Fj is the initial binary MM, F; is the patients x genes mutation matrix at iteration ¢,
W is a normalized version of the adjacency matrix [13] of the considered network, and « is
a tuning parameter with a value between 0 and 1, which controls the length of the diffusion
paths along the network and was set at 0.7 [6].

This equation is solved iteratively for different values of ¢ until the convergence,
defined by the norm || F;41 — F¢|| < &, is reached. At the end of this process, the obtained F;
represents the NSM.

In this work, a simplified version of the previously described propagation process was
considered, which still uses the same equation but is solved only once as follows (2):

F=aFW+ (1—a)F )

This solution was tested by evaluating the performance compared to that of the
iterative version [9] without observing significant differences both in terms of patient
stratification and in the association of the generated subtypes with clinical characteristics.

2.5. Autoencoder for Dimensionality Reduction

The NSM obtained from network propagation is provided as input to the autoen-
coder, an unsupervised ML algorithm belonging to the category of ANNS. It consists of
two fundamental parts: an encoder and a decoder, as shown in Figure 1d.

During the training phase, the encoder compresses the input data to a “latent space”,
obtaining a set of essential features. Subsequently, the decoder attempts to reconstruct the
original data from these features.

The primary objective for training the autoencoder is, therefore, not only the accu-
rate reconstruction of the input data but also, above all, the learning of a compact and
meaningful representation of the data.

This compression process enables effective dimensionality reduction, allowing for the
essential information contained in the data to be represented in a lower-dimensional space.

What distinguishes autoencoders from other dimensionality reduction techniques,
such as principal component analysis [21], is their ability to capture complex and nonlinear
relationships in the data. Autoencoders are able to leverage nonlinear activation functions
and deep neural structures to learn richer and more detailed data representations.

In the simplest case, an autoencoder may have a structure composed of a single
hidden layer (between the input and output layers), which number of neurons represents
the dimension of the latent space, corresponding to the number of essential features.
However, to address more complex problems, it is possible to use architectures typical of
deep learning frameworks with multiple hidden layers, Figure 1d.

Each layer of an ANN is characterized by an activation function that determines the be-
havior of the neurons composing it, giving nonlinear characteristics, to the neural network.

In a given layer (excluding the input layer), each neuron produces an output signal
that is dependent on the weighted sum of the signals from the neurons in the previous layer,
combined with an activation function that determines the nonlinear behavior, influencing
the neural network’s learning process.

In this work, ReLU, rectified linear unit, functions were used for all the hidden layers
and the sigmoid function for the output layer, defined respectively by Equations (3) and (4)
as follows:

f(z) = max(0,z) (©)
fz) = 4
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The training process of the autoencoder is based on the objective for minimizing the
reconstruction error between the input data and the generated output data, using a loss
equation (L) that measures their difference. The loss equation is defined by the mean
squared error, as shown in Equation (5):

Lre(,2) = - Y (31— ) ®
where 7 is the number of patients, x is the input data (NSM), and £ is the output data (NSM
reconstructed).

By minimizing L. during training, the autoencoder tries to generate an output that
best approximates the original input, capturing the essential features in the data.

The minimization of L., as in all ANNSs, involves the use of optimization techniques,
such as backpropagation and gradient descent [22], to iteratively calculate and update
the network parameters until reaching an acceptable value of L or a certain number of
epochs (where an epoch refers to a single iteration of the training process through the entire
training set).

Given the complexity and high dimensionality of somatic mutation data, in this paper,
an autoencoder with a deep learning architecture was implemented. Its structure comprises
three hidden layers composed of 500, 100, and 500 neurons, Figure 1d.

The 100 neurons of the intermediate layer correspond to the dimension of the latent
space in which the essential features, which constitute the compact representation of the
input data, are defined.

At the end of the training, the mutational profile of each patient is described by these
100 new features, which will compose the EM (patients x features), to be used in the
clustering phase.

The implementation of the autoencoder was realized in Python (3.10.12), using the
Keras module within the Tensorflow library (2.8.2).

For the training of the autoencoder, the following configuration was set:

1.  The input data were split into a training set and a validation set, with a ratio of 90/10,
in order to evaluate the algorithm’s performance and prevent overfitting;

2. The Adam algorithm [23] was used to optimize the minimization process of Ly,
setting a learning rate of 0.0001. The learning rate represents the size of the parameter
update step of the autoencoder in the procedure for seeking the minimum Ly;

3. A batch size of 32 was set, useful for accelerating training; it defines the size of
the number of samples (patients) processed by the algorithm before updating the
parameters;

4.  Training was conducted for a maximum of 150 epochs.

2.6. K-Means Consensus Clustering

After appropriately scaling the features contained in the EM, the consensus clustering
technique [14] combined with the K-means algorithm [24] is applied for the clustering
phase to identify the subtypes.

This technique, well-known in cancer research [25], is based on the repetition of
sampling and clustering, allowing for the assessment of subtypes’ stabilities with respect
to the sampling variability, increasing confidence in their real validity.

The algorithm starts by subsampling a proportion of patients and features from the EM.
Each subsampling is then divided into a maximum of k groups using the K-means algorithm.
After repeating this process for a specific number of iterations, pairwise consensus values are
computed. These values, which indicate the proportion of times two patients were grouped
together, are stored in a consensus matrix (CM) for each k value considered.

Finally, to assign each patient to a specific subtype/cluster, hierarchical agglomerative
consensus clustering is applied using the distance between the consensus values.
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The CM is a square matrix (patients x patients) having patients in both rows and
columns, which consensus values range from 0 (for patients never grouped in the same
subtype) to 1 (for patients always grouped in the same subtype).

To assess the quality of the identified clusters, it is possible to use heatmaps, graphic
representations of the values contained in the CMs, in which a continuous color scale is
associated with the range 0-1, such that the value 0 corresponds to white and the value 1 to
blue, Figure 1e.

By arranging the values in the CMs so that patients belonging to the same subtype are
adjacent, it is possible to obtain, in the ideal case of perfect consensus, heatmaps composed
of blue blocks arranged along the diagonal (the identified subtypes) on a white background.

In this work, K-means consensus clustering was implemented using the R package
(4.3.2) Consensus Cluster Plus (1.66.0) [26], setting a maximum value for the k clusters to
be evaluated equal to 6. The number of repetitions of the K-means algorithm was set at
1000, and for each run, 80% of the patients and 80% of the features were sampled.

2.7. Statistical Analysis for Clinical Data

The Kaplan—-Meier method and the log-rank test were used to assess the differences
between the overall survival (OS) probabilities among the identified patient subtypes.

In both the univariate and multivariate analyses, a Cox proportional hazard model
was used to estimate hazard ratios (HRs) and 95% confidence intervals for the subtypes in
relation to the OS after verifying the assumption of the proportional hazards.

In particular, for the multivariate analysis, the Cox model was initially built by includ-
ing all the clinical variables that, in the univariate analysis, reached significance, with at
least a p-value of <0.2. With the backward stepwise selection technique, the final model
was obtained by removing the non-significant variables (p-value > 0.05). To evaluate the
predictive power added by the identified subtypes, the baseline model, which includes
only clinical covariates, was compared with the full model, which includes subtypes in
addition to covariates. The likelihood-ratio test was used to compare the two models.

The associations between the subtypes and the available clinical variables were as-
sessed using the Kruskal-Wallis rank sum test or the Wilcoxon rank sum test for continuous
variables and Fisher’s exact test or Pearson’s chi-squared test for categorical variables.

For all the tests, a p-value of < 0.05 was considered as being statistically significant.
The statistical analyses were performed using R statistical software, version 4.3.2 [27].

3. Results

The algorithm was tested on three cohorts of patients with bladder, ovarian or kid-
ney cancers, considering three gene interaction networks: STRING v12.0, HumanNet v3,
and Mentha.

For each tumor type and each molecular network, EMs were generated and used for
patient stratification by applying K-means consensus clustering, considering a number of
subtypes/clusters (k) ranging from 2 to 6.

In each of the three cancer types, the proposed algorithm was able to identify struc-
turally robust subtypes, achieving similar results for the three molecular networks, as
observed in the heatmaps related to the CMs (Figure 2 and Supplementary Figures 52-54).

By varying k from 2 to 6, the associations between the identified subtypes and
the available clinical variables, particularly survival, were assessed to determine their
biological significance.
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Figure 2. Heatmaps relative to CMs for the different values of k subtypes considered for the
stratification, applying some networks to cancer datasets. The blocks in blue correspond to a high
consensus value among patient pairs, indicating reliable clusters.
3.1. Bladder Cancer Data
In bladder cancer, each identified subtype was significantly associated with survival
(log-rank test p-value < 0.05) for all the values of the k subtypes considered and with all the
molecular networks (Figure 3a).
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Figure 3. Analysis for bladder cancer in the 412 patients considered from the TCGA dataset.
(a) Significant associations between survival and subtypes obtained for the three networks con-
sidered. Dashed line represents the significance threshold: -log10(Log-rank p-value = 0.05). (b) OS
Kaplan-Meier curves for the four subtypes (k = 4) obtained using the STRING network.

The subtypes most significantly associated with survival were obtained using the
STRING network for k = 4 (log-rank test p-value < 0.0001) (Figure 3b).

Subtype 2 showed the worst prognosis, with a median overall survival of 23.4 months.
For subtype 1, a median overall survival time of 86.8 months was observed. Subtypes 3
and 4 displayed the best survival (the median was not reached in the observation interval).
The other networks provided similar results (Supplementary Figures S5-57).

Because subtype 4 consisted of only two patients, setting subtype 3 as a reference in
the univariate Cox model, subtype 2 had an HR of 3.60 (95% CI 1.75-7.38, p-value < 0.001),
while subtype 1 had an HR of 1.99 (95% CI 0.93—4.25, p-value = 0.074).

In analyzing the additional clinical characteristics available from the TCGA dataset,
significant associations were observed between the four subtypes and the tumor stage.
Subtypes 2 and 1 have higher percentages of patients with tumor stage IV (35%) compared
to the other subtypes with better survival rates (Table 3).
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Table 3. Bladder cancer distributions of clinical characteristics in the four subtypes (k = 4) obtained
using the STRING network.

Subtype (k)
. Overall 1 2 3 4 1
Characteristic N 412(100%) 121 (29%)  255(62%) 34 (8.3%) 205%)  PValue
Sex 411 0.2
Female 108 (26%) 24 (20%) 74 (29%) 10 (29%) 0 (0%)
Male 303 (74%) 96 (80%) 181 (71%) 24 (71%) 2 (100%)
Missing 1 1 0 0 0
Age at Diagnosis 411 69 (60; 76) 69 (61; 76) 68 (60; 76) 69 (61;76) 73 (71;74) >0.9
Missing 1 1 0 0 0
Weight 368 78 (65; 92) 80 (65; 94) 77 (65; 90) 82 (72;95) 10? 12)01; 0.2
Missing 44 17 23 4 0
Tumor Stage 409 0.031
I-1I 133 (33%) 42 (35%) 79 (31%) 11 (32%) 1 (50%)
I 141 (34%) 36 (30%) 85 (34%) 19 (56%) 1 (50%)
v 135 (33%) 42 (35%) 89 (35%) 4 (12%) 0 (0%)
Missing 3 1 2 0 0
Grade 408 0.2
High Grade 387 (95%) 115 (97%) 236 (93%) 34 (100%) 2 (100%)
Low Grade 21 (5.1%) 3 (2.5%) 18 (7.1%) 0 (0%) 0 (0%)
Missing 4 3 1 0 0
Histological Subtype 406 0.6
Non-Papillary 273 (67%) 76 (64%) 174 (69%) 22 (67%) 1 (50%)
Papillary 133 (33%) 43 (36%) 78 (31%) 11 (33%) 1 (50%)
Missing 6 2 3 1 0

N is the number of non-missing values; continuous variables are expressed as medians (IQRs) and categorical
variables as n (%); ! Kruskal-Wallis rank sum test; Fisher’s exact test; Pearson’s chi-squared test; bold values

indicate p-values of < 0.05.

After evaluating the associations of the clinical variables with survival in the univariate

analysis (Supplementary Table S1), a multivariate Cox proportional hazard model was
built, including subtypes, age at diagnosis, and tumor stage (Table 4). The predictive power
added by the four identified subtypes, when comparing the full model with the baseline
model, was significant (likelihood-ratio test p-value = 0.0001).

Table 4. Multivariable Cox proportional hazard model for OS (bladder cancer data with k = 4).

Characteristic Value 2
(N Observations = 407; HR' 95% CI'! p-Value P -Gla ]]: el
N Events = 178) oba
Subtype (k) <0.001
1.76 0.82,3.80 0.148
3.10 1.50, 6.42 0.002
3 (Reference) —
0 —— 0.994
Age at Diagnosis 1.03 1.01,1.04 <0.001
Tumor Stage <0.001
I-1I (Reference) —
1.55 1.01,2.36 0.045
2.62 1.76, 3.89 <0.001

1 HR = hazard ratio; CI = confidence interval; 2 global p-values for categorical variables with more than
two categories; bold values indicate p-values of < 0.05.
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Figure 4a provides an overview of the top 10 mutated genes in the entire population
considered from the bladder cancer TCGA dataset (N = 412). Their distributions across the
four subtypes are represented in Figure 4c. In the overall population, the most frequently
mutated genes are TTN and TP53, present in 46.4% and 40.3% of the patients, respectively.
A similar pattern is observed in each subtype, except for subtype 4, which did not show
mutations in TP53; however, this subtype accounts for only two patients.

Kruskal-Wallis, p < 0.0001
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Figure 4. Summary of somatic mutations in the 412 patients considered from the bladder cancer TCGA
dataset. (a) Distribution of the top 10 mutated genes in the whole population. (b) Distributions of the
numbers of mutated genes per patient in each subtype and in the whole population. (c) Distribution
of the top 10 mutated genes across the subtypes.

We observed significant differences (p-value < 0.0001) in the numbers of mutated
genes per patient among the subtypes (Figure 4b and Supplementary Table 52). Subtypes 1
and 2 are characterized by lower numbers of mutated genes, with medians of 261 and 95,
respectively, compared to subtypes 3 and 4, which displayed significantly higher medians
of 572 and 2002, respectively.

3.2. Ovarian Cancer Data

In the initial analysis, the associations between the identified subtypes and survival
were assessed, yielding significant results for all the values of the k clusters considered and
with all the molecular networks (log-rank test p-value < 0.05), Figure 5a.

Considering three subtypes (k = 3) using the HumanNet network, the Kaplan-Meier
curves obtained (log-rank test p-value = 0.0011), reported in Figure 5b, showed that patients
with subtype 2 ovarian cancer had the most aggressive disease (with a median overall
survival of 38 months) compared to the less aggressive subtype 3 (with a median overall
survival of 66.6 months). An overview of the results obtained with the other networks is
available in Supplementary Figures S8-S10.

Setting subtype 3 as the reference in the univariate Cox proportional hazard model,
subtype 1 had an HR of 1.42 (95% CI 0.84-2.38, p-value = 0.19), while subtype 2 had an HR
of 2.17 (95% CI 1.33-3.55, p-value = 0.002).

Among the identified subtypes and the other clinical variables available from the
TCGA dataset (Table 5), significant associations were observed with the tumor stage, age
at diagnosis, and response to platinum therapy after surgery. Patients in subtype 2, who
have a lower survival rate, are all in stage III-IV (except for one case) compared to the other
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subtypes, which have higher percentages of patients in stage II. Regarding the responses to
platinum therapy, patients in subtype 3 had the highest percentage of complete responses
(86%) without any cases of progression or stable disease, which corresponds to the best
survival rate compared to those of the other subtypes.
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Figure 5. Analysis for ovarian cancer in the 316 patients considered from the TCGA dataset.
(a) Significant associations between survival and subtypes obtained for the three networks con-
sidered. Dashed line represents the significance threshold: -log10(Log-rank p-value = 0.05). (b) OS
Kaplan-Meier curves for the three subtypes (k = 3) obtained using the HumanNet network.

Table 5. Ovarian cancer distributions of clinical characteristics in the three subtypes (k = 3) obtained
using the HumanNet network.

Subtype (k)
-~ Overall 1 2 3 1
Characteristic N 316 (100%)  111(35%)  162(51%) 43 (14%)  P-Value
Age at Diagnosis 316 59 (51; 69) 57 (50; 66) 59 (51; 70) 63 (59; 72) 0.043
Tumor Stage 315 0.007
I 14 (4.4%) 9 (8.2%) 1 (0.6%) 4 (9.3%)
I 248 (79%) 83 (75%) 134 (83%) 31 (72%)
v 53 (17%) 18 (16%) 27 (17%) 8 (19%)
Missing 1 1 0 0
Grade 309 0.7
G2 28 (9.1%) 12 (11%) 12 (7.6%) 4(9.3%)
G3 281 (91%) 97 (89%) 145 (92%) 39 (91%)
Missing 7 2 5 0
Residual Tumor
After Surgery 278 06
>10 mm 70 (25%) 27 (29%) 33 (23%) 10 (25%)
<10 mm 208 (75%) 67 (71%) 111 (77%) 30 (75%)
Missing 38 17 18 3
Response to
Platinum Therapy 260 0.030
Complete o o o o
Response 184 (71%) 63 (71%) 91 (67%) 30 (86%)
Partial o o o o
Response 39 (15%) 13 (15%) 21 (15%) 5 (14%)
Progressive o o o o
Disease 25 (9.6%) 12 (13%) 13 (9.6%) 0(0%)
Stable Disease 12 (4.6%) 1(1.1%) 11 (8.1%) 0 (0%)
Missing 56 22 26 8

N is the number of non-missing values; continuous variables are expressed as medians (IQRs) and categorical
variables as n (%); ! Kruskal-Wallis rank sum test; Fisher’s exact test; Pearson’s chi-squared test; bold values
indicate p-values of < 0.05.

The associations between the clinical variables and survival are detailed in
Supplementary Table S3.

In the multivariate analysis, the subtypes, age at diagnosis, and response to platinum
therapy were significantly associated with survival, as shown in the final Cox model
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(Table 6). The predictive power added by the subtypes, compared to the baseline model,
was significant (likelihood-ratio test p-value = 0.01).

Table 6. Multivariable Cox proportional hazard model for OS (ovarian cancer data with k = 3).

Characteristic Value 2
(N Observations = 260; HR! 95% CI'! p-Value P -Gla ll)l el
N Events = 144) oba
Subtype (k) 0.011
1 1.35 0.74,2.45 0.323
2 2.03 1.15,3.58 0.014
3 (Reference) — —
Age at Diagnosis 1.02 1.01,1.04 0.004
Response After Platinum
Thelr’apy <0.001
Complete Response
(Reference) - -
Partial Response 4.20 2.64, 6.68 <0.001
Progressive Disease 5.46 3.31,9.01 <0.001
Stable Disease 2.78 1.31,5.91 0.008

1 HR = hazard ratio; CI = confidence interval; 2 global p-values for categorical variables with more than
two categories; bold values indicate p-values of < 0.05.

Regarding somatic mutations, in the entire population considered from the ovarian
cancer TCGA dataset (N = 316), TP53 dominates over all the other genes, with a prevalence of
86.4%, followed by TTN, BRCA1, and BRCA2 to a much lower extent (Figure 6a). BRCAI and
BRCA2 have been investigated in various studies highlighting their significant prognostic and
predictive roles in both survival and sensitivity to platinum-based treatments. BRCA1 and
BRCA? have higher prevalences in subtypes 1 and 3 than in subtype 2 (Figure 6c¢).
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Figure 6. Summary of somatic mutations in the 316 patients considered from the ovarian cancer
TCGA dataset. (a) Distribution of the top 10 mutated genes in the whole population. (b) Distribu-
tions of the numbers of mutated genes per patient in each subtype and in the whole population.
(c) Distribution of the top 10 mutated genes across the subtypes.
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Finally, regarding the distribution of the number of mutated genes per patient, signifi-
cant differences were observed between the subtypes (p-value < 0.0001), with subtype 2 hav-
ing the lowest number of mutated genes, characterized by a median of 28 mutations com-
pared to 49 and 84 in subtypes 1 and 3, respectively (Figure 6b and Supplementary Table 54).

3.3. Kidney Cancer Data

In kidney cancer, for each value of the k cluster and for almost all the molecular
networks considered, subtypes significantly associated with survival were identified (log-
rank test p-value < 0.05), as shown in Figure 7a.

Networks 1.00
[l HumanNet

3 W Mentha
M sTRING

Log-rank p =0.0021
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=
a

o
@
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= 1(148,
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o 0.00
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0 12 24 36
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4 48 60
Number of subtypes (k) Time (months)

Figure 7. Analysis for kidney cancer in the 424 patients considered from the TCGA dataset.
(a) Significant associations between survival and subtypes obtained for the three networks con-
sidered. Dashed line represents the significance threshold: -log10(Log-rank p-value = 0.05). (b) OS
Kaplan-Meier curves for the two subtypes (k = 2) obtained using the Mentha network.

With the Mentha network for k = 2, the subtypes most significantly associated with
survival were identified (log-rank test p-value = 0.0021), Figure 7b. Patients were classified into
a high-risk group (subtype 1) or a low-risk group (subtype 2), with median overall survivals
of 52.2 and 80.6 months, respectively, and an HR of 1.68 (95% CI 1.20-2.34, p-value = 0.002) for
subtype 1 vs. subtype 2. For all the other results, refer to Supplementary Figures S11-513.

In analyzing the clinical variables available from the TCGA (Table 7), a significant
association was observed between the subtypes and age at diagnosis. Patients in subtype 2
had a median age of 59 years, whereas those in subtype 1 had a median age of 64 years. No
significant differences were found between the subtypes for the other variables.

Table 7. Kidney cancer distributions of clinical characteristics in the two subtypes (k = 2) obtained
using the Mentha network.

Subtype (k)
. Overall 1 2 1

Characteristic N 424 (100%) 148 (35%) 276 (65%) p-Value
Sex 424 0.7

Female 147 (35%) 53 (36%) 94 (34%)

Male 277 (65%) 95 (64%) 182 (66%)
Ageat 424 61 (52; 70) 64 (57; 73) 59 (50; 69) <0.001
Diagnosis
Tumor Stage 423 0.3

I-IT 241 (57%) 78 (53%) 163 (59%)

il 112 (26%) 46 (31%) 66 (24%)

v 70 (17%) 24 (16%) 46 (17%)

Missing 1 0 1
Grade 423 0.4

G1-G2 181 (43%) 58 (39%) 123 (45%)

G3 175 (41%) 67 (46%) 108 (39%)

G4 67 (16%) 22 (15%) 45 (16%)

Missing 1 1 0

N is the number of non-missing values; continuous variables are expressed as medians (IQRs) and categorical
variables as n (%); 1 Wilcoxon rank sum test; Pearson’s chi-squared test; bold values indicate p-values of < 0.05.
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In the univariate analysis, all the covariates were significantly associated with survival,
except for sex (Supplementary Table S5).

The identified subtypes were significant predictors of survival, adding predictive
power to the baseline Cox model, which includes covariates only, such as the tumor stage,
grade and age at diagnosis (likelihood-ratio test p-value = 0.02), Table 8.

Table 8. Multivariable Cox proportional hazard model for OS (kidney cancer data with k = 2).

Characteristic -Value 2
(N Observations = 419; HR! 95% CI! p-Value P Gla ll)l el
N Events = 140) oba
Subtype (k)
1 151 1.06,2.14 0.022
2 (Reference) — —
Age at Diagnosis 1.04 1.02, 1.05 <0.001
Tumor Stage <0.001
I-1I (Reference) — —
I 2.24 1.44,3.47 <0.001
v 5.16 3.26,8.17 <0.001
Grade 0.013
G1-G2 (Reference) — —
G3 117 0.77,1.79 0.457
G4 2.02 1.24,3.29 0.005

I HR = hazard ratio; CI = confidence interval; 2 global p-values for categorical variables with more than
two categories; bold values indicate p-values of < 0.05.

Regarding somatic mutations, VHL has the highest prevalence (43.2%) in the entire
population considered from the kidney cancer TCGA dataset (N = 424), followed by PBRM1
and MUCH4, both slightly above 20% (Figure 8a). The distributions of the mutations across
the subtypes are shown in Figure 8c.
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Figure 8. Summary of somatic mutations in the 424 patients considered from the kidney cancer TCGA
dataset. (a) Distribution of the top 10 mutated genes in the whole population. (b) Distributions of the
numbers of mutated genes per patient in each subtype and in the whole population. (c) Distribution
of the top 10 mutated genes across the subtypes.
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Comparing the subtypes by the number of mutated genes per patient, a significant
difference was observed (p-value < 0.0001), with subtype 1 having a median of 66 mutated
genes compared to 38 in subtype 2 (Figure 8b and Supplementary Table S6).

4. Discussion

In the expanding landscape of genomic algorithms for tumor subtype characterization,
the approach proposed in this study combines the strengths of various methodologies.

The proposed algorithm leverages prior knowledge from molecular networks, the
power of deep neural networks in extracting hidden information from data, and the
robustness of consensus clustering in revealing stable clusters within the data.

Most studies applying stratification algorithms mainly utilize continuous genomic data
formats, such as gene expressions and other omics profiles. In contrast, D3NS identifies
significant subtypes, both biologically and clinically, by analyzing somatic mutations
encoded in binary format, categorizing each gene as mutated or not mutated.

The incorporation of molecular networks, with constantly updated databases, not
only addresses the challenge of mutation sparsity but also enhances significant biological
foundations essential for effective subtype classification.

The autoencoder, implemented with a deep learning architecture, mitigates high
data dimensionality inherent in large gene datasets, yielding a compressed representation
that retains comprehensive input information. This avoids the need for feature selection
algorithms, which often restrict the informative range essential for stratification.

From a stratification perspective, the algorithm delivers well-defined clusters at the
structural level, as shown by the heatmaps (Figure 2 and Supplementary Figures 52-54),
which are very similar to those obtained by other state-of-the-art algorithms for tumor
subtype discovery based on somatic mutations [6-10].

Our results demonstrate D3NS'’s capability in identifying predictive subtypes for
survival (Figures 3, 5 and 7) and their associations with other clinical variables, such as
tumor stage, grade or treatment response, confirming its validity across diverse molecular
networks. Furthermore, integrating subtype information with clinical variables signifi-
cantly enhances the predictive power for survival, suggesting these subtypes as molecular
prognostic indicators.

This study considered datasets that include only the most common histological sub-
types for each tumor localization. For bladder cancer, cases with muscle-invasive bladder
cancet, both non-papillary and papillary without other histological characterizations, were
included (Table 3); for ovarian cancer, the dataset focused on high-grade serous carci-
noma [4], and for kidney cancer, the data refer to clear cell renal cell carcinoma [17]. This
approach allowed for us to explore the molecular variability within a homogeneous group
of cases, identifying subtypes with significantly different characteristics.

Several studies in serous ovarian cancer highlight the prognostic and predictive roles of
BRCA1 and BRCA2 germlines and somatic mutations in survival and responses to platinum-
based treatments [28-34]. Consistently, our findings on ovarian cancer reveal higher
prevalences of BRCA1 and BRCA2 mutations in subtypes 1 and 3, which are associated
with better survival and responses to treatments compared to subtype 2 (Figure 6c).

Among the top 10 mutated genes found in the kidney cancer dataset, PBRM1, BAPI,
SETD?2, and VHL have been implicated in tumor progression and poor prognoses [35]. As
shown in Figure 8c, these mutated genes have a higher prevalence in subtype 1, correlating
with worse prognoses.

Although this algorithm was tested on three datasets, its application may be extended to
other tumor localizations and, within bladder, ovarian, and kidney cancers, to a wider variety
of histological cancer subtypes through parameter adjustments to optimize the performance.
These broader applications could potentially be used to explore the concordance between
tumor subtypes identified using the algorithm and the more classical histological tumor
stratification, providing further insights into the definition of tumor pathological mechanisms.
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Although this research proposes a powerful methodology for tumor stratification, it
has some limitations.

First, to ascertain the robustness and generalizability of the D3NS, future studies
should validate its application to diverse real-world datasets of similar tumor types, includ-
ing comparisons with other methods already available in the literature. Second, further
analyses are needed to investigate the genetic compositions of the subtypes, given the
significant difference observed in the numbers of mutated genes among them.

Additionally, this study investigated neither specific mutation classes (e.g., nonsense
mutations) nor epigenetic alterations (e.g., DNA methylation and histone modifications),
which potentially impact tumor suppressor genes.

Despite these limitations, we believe that the development of more sophisticated
versions of the autoencoder and the use of other stratification approaches could help to
better capture the biological complexities hidden in genomic data.

5. Conclusions

Identifying tumor subtypes is crucial for precise diagnoses and personalized therapies.
Our study demonstrates that the D3NS algorithm is a valuable tool for tumor stratification
in the context of precision medicine.

Integrating somatic gene panel testing with D3NS analysis can offer potential support
in clinical settings, with opportunities for improvement through the selection of clinically
relevant genes and appropriate gene interaction networks.

In conclusion, this approach can provide a base model in cancer research, adaptable
for different types of cancer through necessary adjustments.
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