
Application Notes

pyBioPortal: a Python package for simplifying cBioPortal
data access in cancer research
Matteo Valerio , MscEng1,�, Alessandro Inno, MD1, Stefania Gori, MD1

1Medical Oncology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Verona, Italy
�Corresponding author: Matteo Valerio, MscEng, Medical Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, 37024 Negrar di
Valpolicella, Verona, Italy (matteo.valerio@sacrocuore.it)

Abstract
Objectives: In recent years, the rise of big data and artificial intelligence has led to an increasing expansion of databases and web services in
biomedical research. cBioPortal is one of the most widely used platforms for accessing cancer genomic and clinical data. The primary objective
of this study was to develop a tool that simplifies programmatic interaction with cBioPortal’s web service.
Materials and Methods: We developed the pyBioPortal Python package, which leverages the cBioPortal REST API to access genomic and clin
ical data. The retrieved data is returned as a Pandas DataFrame, a format widely used for data analysis in Python.
Results: pyBioPortal offers an efficient interface between the user and the cBioPortal database. The data is provided in formats conducive to
further analysis and visualization, promoting workflows and improving reproducibility.
Discussion: The development of pyBioPortal addresses the challenge of accessing and processing large volumes of biomedical data. By simpli
fying the interaction with the cBioPortal API and providing data in Pandas DataFrame format, pyBioPortal allows users to focus more on the ana
lytical aspects rather than data extraction.
Conclusion: This tool facilitates the retrieval of heterogeneous biological and clinical data in a standardized format, making it more accessible
for analysis and enhancing the reproducibility of results in cancer informatics. Distributed as an open-source project, pyBioPortal is available to
the broader bioinformatics community, promoting collaboration and advancing research in cancer genomics.

Lay Summary
The advent of big data and artificial intelligence has revolutionized cancer research, making large amounts of data available for analysis. However,
accessing this data can be challenging, especially for researchers without specific programming skills or those who prefer to focus on data analy
sis and interpretation rather than on the technical aspects of data extraction. pyBioPortal is a newly developed Python tool designed to simplify
the process of retrieving data from cBioPortal, a widely used platforms for accessing cancer genomic and clinical data. By making data easier to
access and analyze, pyBioPortal enables researchers to focus on uncovering new insights that drive advancements in cancer research. The tool is
freely available as an open-source project, promoting widespread use and collaboration within the bioinformatics community.
Key words: cBioPortal; cancer research; bioinformatics; Python.

Introduction
In recent years, with the advent of big data and artificial
intelligence, there has been a growing proliferation of data
bases and web services in the field of biomedical research,1

which have now become essential tools for sharing and
accessing crucial information in cancer informatics. Data
access is fundamental in cancer research, where the analysis
of large amounts of genomic, transcriptomic, and clinical
data can lead to new discoveries and therapeutic develop
ments.cBioPortal2–4 is one of the most widely used plat
forms for accessing such data, offering both an interactive
web-based exploration interface and public Representa
tional State Transfer (REST) Application Programming
Interface (API)5 for retrieving information from a wide
range of cancer studies. However, directly using the
downloadable data from cBioPortal without significant
processing, or specifically its available API, could be

challenging for researchers and university students without
specific programming skills, as the data may be presented
in complex, nested formats that require conversion into
usable tables. Moreover, users who prefer to focus on data
analysis and interpretation rather than on the technical
aspects of data extraction and preparation may find these
tasks prohibitive. To address this issue, a new Python pack
age called pyBioPortal has been developed.

Objectives
The main objective that led to the development of pyBio
Portal is to simplify programmatic interaction with
cBioPortal’s public API and provide the retrieved data in a
standardized format, directly usable for analysis, with the
aim of improving the reproducibility of results in cancer
research.

Received: September 19, 2024; Revised: November 25, 2024; Editorial Decision: December 2, 2024; Accepted: December 4, 2024
© The Author(s) 2025. Published by Oxford University Press on behalf of the American Medical Informatics Association.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

JAMIA Open, 2025, 8(1), ooae146
https://doi.org/10.1093/jamiaopen/ooae146
Application Notes

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/8/1/ooae146/7933298 by guest on 27 D
ecem

ber 2024

https://orcid.org/0000-0001-9156-4941

Materials and methods
Implementation and architecture
Python 36 was chosen as the programming language for
pyBioPortal, given its growing popularity in bioinformatics
and compatibility with all major operating systems. The ver
sion of Python used for development is 3.9, which ensures
stability and support in the more recent versions of Python,
as version 2 has not been supported since 2020.

The package uses the REST API web services provided by
cBioPortal to retrieve the data of interest, leveraging external
libraries such as Requests7 and Pandas8 for handling Hyper
text Transfer Protocol (HTTP) requests9 and processing the
retrieved data. The acquired and appropriately processed
data are returned to the user as a Pandas DataFrame object, a
widely used format for data analysis in Python, as shown in
Figure 1.

The structure of the package is organized into modules,
each of which is dedicated to a specific type of data, as
defined by the cBioPortal API described in the related docu
mentation (https://www.cbioportal.org/api/swagger-ui/index.
html) and shown in Figure 1.

Each module in the package consists of various functions
that provide simplified access to the resources, handling the
interaction with the web service transparently for the user,
without the need to know how the HTTP request to be sent
to the server should be structured.

pyBioPortal manages the entire set of endpoints provided
by the cBioPortal REST API, supporting HTTP requests with
both GET and POST methods. The functions within each
module are named according to a convention outlined in the
API documentation, which identifies the type of request sent
to the server: functions using the GET method are prefixed
with “get,” while those using the POST method are prefixed
with “fetch.”

Database query and data retrieval
To specify and request which data you want to retrieve from
the cBioPortal database, it is necessary to define a query hav
ing parameters whose type and meaning are described in the
online documentation provided by cBioPortal. For this pur
pose, by properly setting these parameters and passing them
as arguments to the relevant pyBioPortal functions, based on
the type of data of interest, the following operations are per
formed transparently for the user: composing the HTTP
request to send to the server; parsing the responses obtained
from the web API provided in JSON format (JavaScript
Object Notation)10; processing the results and returning a
Pandas DataFrame containing the desired data.

To deliver data directly in a tabular format as a Pandas
DataFrame, the package leverages private auxiliary functions,
like flatten_dict_columns and flatten_dict_list_columns, to
automatically convert nested dictionaries and lists of diction
aries into flat DataFrame columns. This internal processing is
entirely transparent to the user, allowing for immediate
access to the data in a usable, analysis-ready format without
requiring additional data manipulation. This feature exempli
fies the package’s approach to simplifying data
extraction from complex JSON formats (for technical details,
full function implementations are available in the GitHub
repository).

In addition to the standard parameters required by the
API, some functions accept additional arguments that allow
for more processed results. For example, it is possible to
obtain a DataFrame with data organized in either “wide” or
“long” format. In the “wide” format, variables associated
with the same record (ie, associated with the same patient or
sample) are arranged across multiple columns, which can be
useful for visualizations or specific types of statistical analy
ses (an illustrated example of this transformation is provided
further in the text). Conversely, in the “long” format, these
variables are spread over multiple rows, allowing for easier
application of certain data manipulation techniques and anal
yses that require data to be in a “tall” structure.

For a detailed overview of how to use and correctly set the
parameters for each function, consult the documentation cre
ated for the package, available online.

Runtime execution errors are handled by displaying the
error description returned natively by the web service in the
Python console, along with custom error messages if incor
rect arguments are passed to the functions in the various
modules.

Results
Installation
pyBioPortal has been published on the Python Package Index
(PyPI) (https://pypi.org/project/pybioportal/) and on Ana
conda.org (https://anaconda.org/matteo.valerio/pybioportal),
the 2 most popular platforms used for distributing Python
packages.

The installation of the package is straightforward and fol
lows the standard procedure for both platforms with the fol
lowing commands:

PyPI installation

pip install pybioportal

Anaconda installation

conda install c matteo.valerio pybioportal

Example of usage
pyBioPortal implements a simple and efficient interface
between the user and the cBioPortal database. To illustrate
its usage, an example is provided for retrieving clinical data
on patient survival from a study available in cBioPortal. The
study considered is related to The Cancer Genome Atlas
Serous Ovarian Cancer project,11 identified by the code
“ov_tcga_pub.”

First, import the module that handles the specific type of
data, in this case, “clinical_data.” Next, identify the appro
priate function from the module for the data to be retrieved,
in this case, “fetch_all_clinical_data_in_study.” Then, specify
the variables to be acquired, according to the cBioPortal doc
umentation. In this example, the selected variables are
“os_status” (overall survival status), “os_months” (overall
survival time in months), and “platinum_status” (the
patient’s response to platinum-based treatment). Finally,
based on the specifications of the parameters to be passed to

2 JAMIA Open, 2025, Vol. 8, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
iaopen/article/8/1/ooae146/7933298 by guest on 27 D

ecem
ber 2024

https://www.cbioportal.org/api/swagger-ui/index.html
https://www.cbioportal.org/api/swagger-ui/index.html
https://pypi.org/project/pybioportal/
https://anaconda.org/matteo.valerio/pybioportal

the function, as reported in the pyBioPortal documentation,
it can be executed as shown in the code below:

from pybioportal import clinical_data as cd

clinical variable to retrieve

vars = ["OS_STATUS", "OS_MONTHS", "PLATINUM_STATUS"]

DataFrame containing data retrieved

df = cd.fetch_all_clinical_data_in_study(study_id = "ov_tcga_pub",

attribute_ids = vars,

clinical_data_type = "PATIENT",

ret_format = "WIDE")

Data filtering for graphical representation

df = df.query("PLATINUM_STATUS in ['Resistant', 'Sensitive']")

The Pandas DataFrame returned by the function is shown
in Figure 2.

In this example, an additional argument, “ret_format,” is
passed to the function “fetch_all_clinical_data_in_study,”
specifying that the DataFrame should be returned in “wide”
format. This way, each row of the DataFrame corresponds to
a patient, making it very convenient to use, for example, to
plot Kaplan-Meier survival curves using the Python package
Lifelines,12 obtaining the graph shown in Figure 3.

For further details on how to use the functions of the vari
ous pyBioPortal modules, refer to the online documentation
published on Read the Docs (https://pybioportal.readthedocs.
io), which includes various application examples organized in
Jupyter Notebooks.13

Configuration for local instances of cBioPortal
The pyBioPortal package is designed to interact with the pub
lic API of cBioPortal, with the default Uniform Resource
Locator (URL) set to https://www.cbioportal.org/api. How
ever, the package also supports the use of local instances of
cBioPortal, which can be implemented by institutions or com
panies that wish to maintain their data on private servers.

To use a local instance instead of the public one, API base
URL can be configured using the “configure_base_url” func
tion from the pyBioPortal configuration module (“__con
fig”). This allows HTTP requests to be sent to a specific
cBioPortal instance, installed locally or on a private server,
rather than to the public instance. The following code exam
ple shows how to set a custom base URL:

import pybioportal.__config as conf

conf.configure_base_url("https://local_instance_url")

This feature is particularly useful for users working with
sensitive data or who require complete control over their
analysis environment, avoiding dependence on the public
cBioPortal infrastructure.

Discussion
The pyBioPortal package was developed with the main goal
of simplifying interaction with the public cBioPortal API,
making biological and clinical data more accessible to
researchers or university students who are not familiar with
advanced programming.

This tool significantly reduces the complexity of the data
acquisition process, allowing users to focus on analysis rather
than data extraction techniques. As demonstrated in the
results, data are acquired with just a few lines of Python
code, a simplified approach that enhances efficiency and con
tributes to improving the reproducibility of analyses, a key
objective in bioinformatics research.

From the official documentation of cBioPortal (https://
docs.cbioportal.org/web-api-and-clients/), there are 2 main
ways to access the API using Python: the Bravado package,
which allows direct interaction with the API, and the cbio_py
package, a wrapper for the API.

Compared to these approaches, pyBioPortal provides
advantages in terms of usability and functionality. While
Bravado allows direct and flexible interaction with the API, it

Figure 1. Schematic representation of the data flow from cBioPortal to the user through pyBioPortal.

JAMIA Open, 2025, Vol. 8, No. 1 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/8/1/ooae146/7933298 by guest on 27 D
ecem

ber 2024

https://pybioportal.readthedocs.io
https://pybioportal.readthedocs.io
https://www.cbioportal.org/api
https://docs.cbioportal.org/web-api-and-clients/
https://docs.cbioportal.org/web-api-and-clients/

requires familiarity with API specifications. The retrieved
data are structured as complex objects in the native API for
mat, often requiring significant post-processing before data
analysis. The cbio_py package simplifies this process by
returning the retrieved data as a list of dictionaries, as well as
providing it in the native format. However, as reported in the
documentation, cbio_py is limited to GET endpoints and
does not handle treatment-related data. Additionally, it still
requires post-processing to prepare data for analysis. In con
trast, pyBioPortal handles the entire set of cBioPortal API
endpoints, including both GET and POST methods, and pro
vides data directly in the user-friendly Pandas DataFrame for
mat. This allows flexible and comprehensive access to
various types of clinical and genomic data, facilitating data
analysis.

The ability to easily configure queries through function
arguments and receive data in Pandas DataFrame format pro
vides a significant advantage to users, who can leverage

useful functions applicable to DataFrames for describing and
presenting data.

Currently, pyBioPortal uses the Pandas library to convert
data obtained from cBioPortal into DataFrames, providing a
familiar and versatile format for data analysis in Python.
However, we recognize that processing very large datasets
may present memory and performance limitations. Addition
ally, the retrieval time of large datasets from the cBioPortal
API could be lengthy, slowing down the execution of code
that depends on it. In the future, implementing techniques
such as data streaming or data chunking could improve
the handling of large datasets. These approaches would
allow loading and processing data in smaller portions,
reducing memory usage and increasing the efficiency of the
package on extensive datasets. To optimize both memory
usage and API response times, users are encouraged to specify
targeted queries to avoid loading unnecessary data for their
analysis.

Figure 2. Pandas DataFrame returned by the function execution.

Figure 3. Kaplan-Meier survival curves obtained using Lifelines package with the clinical data retrieved from cBioPortal.

4 JAMIA Open, 2025, Vol. 8, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
iaopen/article/8/1/ooae146/7933298 by guest on 27 D

ecem
ber 2024

The use of the Pandas DataFrame format, popular within
the scientific community, enables integration of this informa
tion into custom Python scripts and pipelines for further
processing and analysis, as well as leveraging Jupyter Note
books to support workflows in scientific computing.

Given that cBioPortal is adopted by numerous institutions
and companies with local installations, pyBioPortal includes
functionality to configure the server URL for API interac
tions. This allows users to send requests to private servers,
keeping data internally and adapting to the needs of manag
ing sensitive data that require complete control over the anal
ysis environment.

In the future, it is planned to implement new supporting
features that will enhance and improve usage, such as user
authorization support for local cBioPortal instances and the
development of built-in analysis functions. Moreover, future
API updates will be considered and included in subsequent
versions of the package.

Conclusion
In this paper, we presented pyBioPortal, a Python package
useful for retrieving data from cBioPortal through its REST
web services, which provides quick and easy access to hetero
geneous biological and clinical data.

The aim is to provide a significant contribution to the bio
informatics community by offering a tool that facilitates pro
grammatic access to cBioPortal data and enhances the
reproducibility of the analyses in cancer research. For this
reason, pyBioPortal has been distributed on GitHub and
released as an open-source project under the Berkeley Soft
ware Distribution version 3 (BSD-3) license to maximize
accessibility, collaboration, and usage.

Author contributions
Matteo Valerio designed, developed, and tested the pyBio
Portal Python package module and example code, wrote the
original draft, reviewed, and edited the manuscript. Alessan
dro Inno and Stefania Gori reviewed the manuscript and pro
vided critical revisions. All authors have read and agreed to
the published version of the manuscript.

Funding
This research received no external funding.

Conflicts of interest
The authors declare no conflicts of interest.

Data availability
pyBioPortal is freely available on PyPI at https://pypi.org/
project/pybioportal/ and on Anaconda.org at https://ana
conda.org/matteo.valerio/pybioportal. Documentation and
examples are available online at https://pybioportal.readthe
docs.io. pyBioPortal source code is publicly accessible at the
following GitHub repository: https://github.com/Matteo-
Valerio/pyBioPortal.

References
01. Luo J, Wu M, Gopukumar D, et al. Big data application in bio

medical research and health care: a literature review. Biomed
Inform Insights. 2016;8:1-10. https://doi.org/10.4137/BII.S31559

02. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics por
tal: an open platform for exploring multidimensional cancer
genomics data. Cancer Discov. 2012;2:401-404. https://doi.org/
10.1158/2159-8290.CD-12-0095

03. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of com
plex cancer genomics and clinical profiles using the cBioPortal. Sci
Signal. 2013;6:pl1. https://doi.org/10.1126/scisignal.2004088

04. de Bruijn I, Kundra R, Mastrogiacomo B, et al.; AACR Project
GENIE BPC Core Team, AACR Project GENIE Consortium.
Analysis and visualization of longitudinal genomic and clinical
data from the AACR project GENIE biopharma collaborative in
cBioPortal. Cancer Res. 2023;83:3861-3867. https://doi.org/10.
1158/0008-5472.CAN-23-0816

05. Fielding RT. Representational state transfer (REST). In: Fielding
RT. Architectural Styles and the Design of Network-Based Soft
ware Architectures [Dissertation]. University of California, Irvine;
2000:76-106. https://ics.uci.edu/�fielding/pubs/dissertation/field
ing_dissertation.pdf

06. Van Rossum G, Python Development Team. Python Language
Reference Release 3.11.3. Lulu Press, Incorporated; 2023. ISBN:
9781312573949.

07. Requests: HTTP for HumansTM–Requests 2.32.3 documentation.
Accessed August 26, 2024. https://requests.readthedocs.io/en/
latest/

08. McKinney W. Data structures for statistical computing in Python.
In: Proceedings of the 9th Python in Science Conference.
2010;56-61. https://doi.org/10.25080/Majora-92bf1922-00a

09. Fielding RT, Reschke J. Hypertext Transfer Protocol (HTTP/1.1):
semantics and content. Internet Engineering Task Force. 2014.
Accessed August 27, 2024. https://www.rfc-editor.org/rfc/pdfrfc/
rfc7231.txt.pdf

10. Bray T. The JavaScript object notation (JSON) data interchange
format. Internet Engineering Task Force. 2017. Accessed August
27, 2024. https://www.rfc-editor.org/rfc/pdfrfc/rfc8259.txt.pdf

11. Cancer Genome Atlas Research Network. Integrated genomic
analyses of ovarian carcinoma. Nature. 2011;474:609-615.
https://doi.org/10.1038/nature10166

12. Davidson-Pilon C. Lifelines: survival analysis in python. JOSS.
2019;4:1317. https://doi.org/10.21105/joss.01317

13. Kluyver T, Ragan-Kelley B, P�erez F, et al. Jupyter Notebooks—a
publishing format for reproducible computational workflows. In:
Proceedings of the 20th International Conference on Electronic
Publishing. IOS Press; 2016:87-90.

© The Author(s) 2025. Published by Oxford University Press on behalf of the American Medical Informatics Association.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
JAMIA Open, 2025, 8, 1–5
https://doi.org/10.1093/jamiaopen/ooae146
Application Notes

JAMIA Open, 2025, Vol. 8, No. 1 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/8/1/ooae146/7933298 by guest on 27 D
ecem

ber 2024

https://pypi.org/project/pybioportal/
https://pypi.org/project/pybioportal/
https://anaconda.org/matteo.valerio/pybioportal
https://anaconda.org/matteo.valerio/pybioportal
https://pybioportal.readthedocs.io
https://pybioportal.readthedocs.io
https://github.com/Matteo-Valerio/pyBioPortal
https://github.com/Matteo-Valerio/pyBioPortal
https://doi.org/10.4137/BII.S31559
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1158/0008-5472.CAN-23-0816
https://doi.org/10.1158/0008-5472.CAN-23-0816
https://ics.uci.edu/%7Efielding/pubs/dissertation/fielding_dissertation.pdf
https://ics.uci.edu/%7Efielding/pubs/dissertation/fielding_dissertation.pdf
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.rfc-editor.org/rfc/pdfrfc/rfc7231.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7231.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc8259.txt.pdf
https://doi.org/10.1038/nature10166
https://doi.org/10.21105/joss.01317

	Active Content List
	Introduction
	Objectives
	Materials and methods
	Results
	Discussion
	Conclusion
	Author contributions
	Funding
	Conflicts of interest
	Data availability
	References

